제 4장 블록 암호 모드

4.0 주요 내용

- □ 블록 암호의 모드(Mode)에 대해 설명하도록 한 다
- □ 임의의 길이의 평문을 암호화하기 위해서는 평 문을 일정한 길이를 갖는 블록으로 나누고 각 블 록에 블록 암호를 반복 적용하여 암호화를 할 필 요가 있다.
- □ 블록 암호를 반복하는 방법을 블록 암호의「모 드」라고 한다.
- □ 블록 암호의 주요 모드인 ECB, CBC, CFB, OFB, CTR에 대해서 차례대로 설명하도록 한다.

4.1 블록 암호 모드

- □ 평문의 길이가 블록 암호의 블록 크기보다 클 경 우에는 어떻게 블록 암호를 적용할 것인가?
- □ 이런 문제점을 해결하고 다양한 응용 환경하에 적절한 암호화 도구로 사용할 수 있는 여러 유형 의 효율적인 운영 방식들을 제시하고 있다.
- □ 이러한 방식들을 블록 암호 모드라고 한다.

4.1.1 블록 암호와 스트림 암호

- □ 블록 암호(block cipher)
 - 어느 특정 비트 수의「집합」을 한 번에 처리하는 암 호 알고리즘
 - 이「집합」을 **블록**(block)이라고 한다.
 - 블록의 비트 수를 **블록 길이**(block length)라고 한다.
- □ 스트림 암호(stream cipher)
 - 데이터의 흐름(스트림)을 순차적으로 처리해 가는 암 호 알고리즘
 - 스트림 암호에서는 1비트, 8비트, 혹은 32비트 등의 단위로 암호화와 복호화가 이루어진다.

4.1.2 모드란

- □긴 평문을 암호화하기 위해서는 블록 암호 알고 리즘을 반복해서 사용하여 긴 평문 전부를 암호 화할 필요가 있다.
- □이와 같이 반복하는 방법을 블록 암호의 **모드** (mode)라고 부른다.

블록 암호의 주요 모드

- □ ECB 모드:
 - Electric CodeBook mode(전자 부호표 모드)
- □ CBC 모드:
 - Cipher Block Chaining mode(암호 블록 연쇄 모드)
- □ CFB 모드:
 - □ Cipher-FeedBack mode(암호 피드백 모드)
- □ OFB 모드:
 - Output-FeedBack mode(출력 피드백 모드)
- □ CTR 모드:
 - CounTeR mode(카운터 모드)

4.1.3 평문 블록과 암호문 블록

□ 평문 블록

- 블록 암호 알고리즘에서 암호화의 대상이 되는 평문을 말한다.
- 평문 블록의 길이는 블록 암호 알고리즘의 블록 길이 와 같다.

□ 암호문 블록

 블록 암호 알고리즘을 써서 평문 블록을 암호화한 암 호문을 말한다.

평문 블록과 암호문 블록

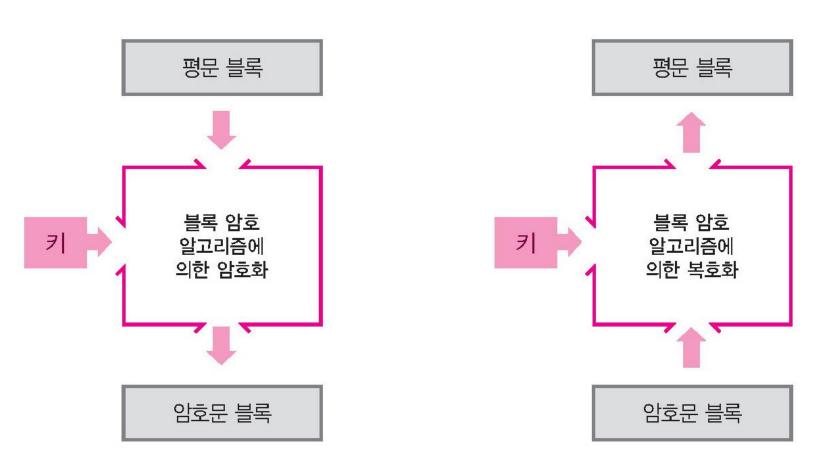
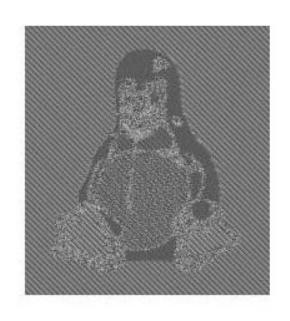
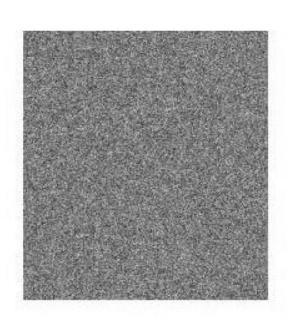


그림 4-1 평문 블록과 암호문 블록


4.2 ECB 모드

- □ 평문 블록을 그대로 암호화하는 것이 ECB 모드 이다.
- □ 간단하지만 약점이 있어서 별로 사용되지 않는 다.


ECB 모드와 다른 모드의 차이

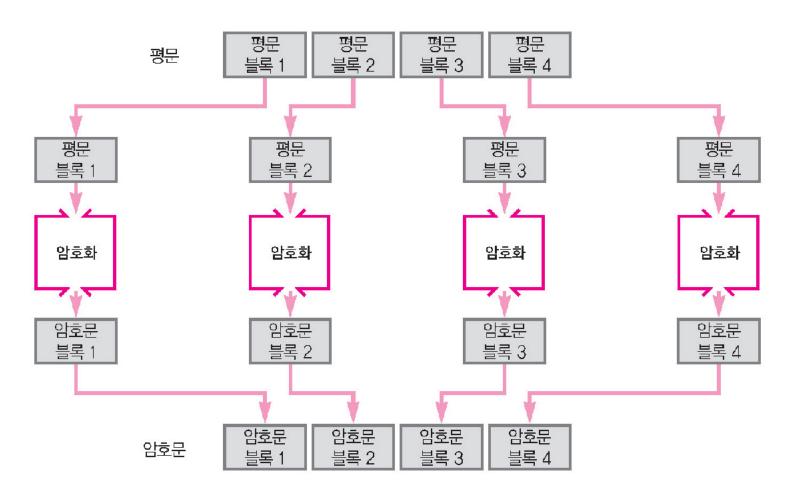
원자료

ECB 모드를 이용한 암호화

다른 모드를 이용한 암호화

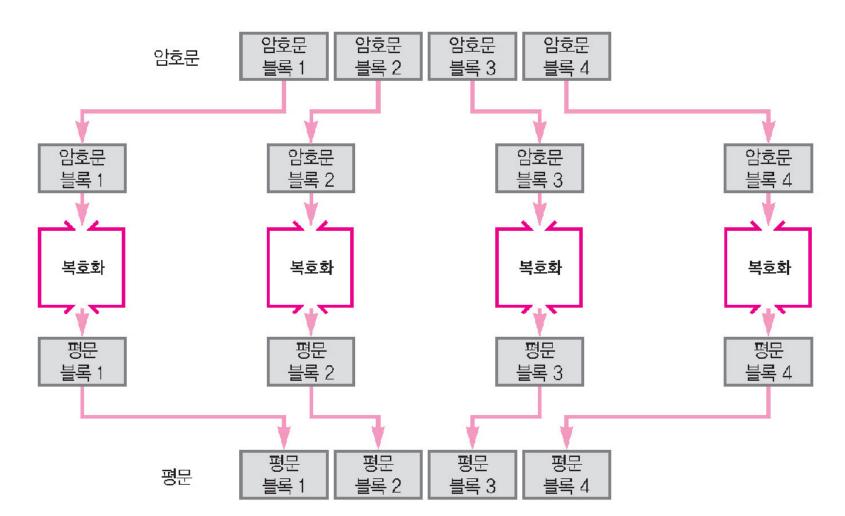
그림 4-2 ECB 모드와 다른 모드의 차이

4.2.1 ECB 모드란


- □ ECB 모드에서는 평문 블록을 암호화한 것이 그대 로 암호문 블록이 된다
- □ 동일한 내용을 갖는 평문 블록은 이에 대응되는 동일한 암호문 블록으로 변환된다

ECB 모드의 특징

- □ 가장 간단한 것이다
- □ 가장 기밀성이 낮은 모드이다.
- □ ECB 모드에서는 평문 블록과 암호문 블록이 일 대일의 관계를 유지하게 된다.
- □ 암호문을 살펴보는 것만으로도 평문 속에 패턴의 반복이 있다는 것을 알게 되며, 이것을 실마리로 암호 해독을 할 수 있게 된다.
- □ 이 모드는 안전하지 않다.


ECB 모드(전자 부호표 모드)

(a) ECB 모드에 의한 암호화

ECB 모드(전자 부호표 모드)

(b) ECB 모드에 의한 복호화

ECB 모드에 대한 공격

- □ ECB 모드에서는 모든 평문 블록이 각각 개별적으로 암호화되고, 복호화 때에는 개별적으로 복호화된다.
- □ 적극적 공격자인 맬로리가 악의를 가지고 암호 문 블록을 서로 바꾸었다면, 수신자가 그 암호문 을 복호화하면 바뀐 암호문 블록에 대응하는 평 문 블록도 바뀌게 된다

4.3 CBC 모드

- □ 블록 암호의 모드로서 다음에 소개하는 것은 CBC 모드이다.
- □ CBC 모드에서는 1개 앞의 암호문 블록과 평문 블록의 내용을 뒤섞은 다음 암호화를 수행한다.
- □ 이것으로 ECB 모드의 약점을 회피할 수 있다.

4.3.1 CBC 모드란

- □ CBC 모드는 Cipher Block Chaining 모드(암호 블록 연쇄 모드)의 약자이다.
 - 암호문 블록을 마치 체인처럼 연결시키기 때문에 붙여진 이름이다.
- CBC 모드에서는 1 단계 앞에서 수행되어 결과로 출력된 암호문 블록에 평문 블록을 XOR 하고 나 서 암호화를 수행한다
- □ 따라서 생성되는 각각의 암호문 블록은 단지 현재 평문블록 뿐만 아니라 그 이전의 평문 블록들의 영향도 받게 된다.

초기화 벡터

- □ 최초의 평문 블록을 암호화할 때는「1 단계 앞의 암호문 블록」이 존재하지 않으므로 「1단계 앞의 암호문 블록」 을 대신할 비트열인 한 개의 블록을 준비할 필요가 있다.
- □ 이 비트열을 **초기화 벡터(initialization vector)** 또는 앞 글 자를 따서 IV라고 부른다.
- □ 초기화 벡터는 비밀키와 마찬가지로 송신자와 수신자간 에 미리 약속되어 있어야 하지만 공개된 값을 사용해도 무방하다.
- 또한 초기화 벡터는 암호화 때마다 다른 랜덤 비트열을 이용하는 것이 보통이다.

패딩

- □ 실제 CBC 모드를 적용할 경우에 암호화될 평문의 길이는 가변적이기 때문에 마지막 블록이 블록의 길이와 항상 딱 맞아 떨어지지 않게 된다.
- □ 이 경우에는 부족한 길이만큼을 '0'으로 채우거 나 임의의 비트들로 채워 넣는다.

마지막 블록 채우기

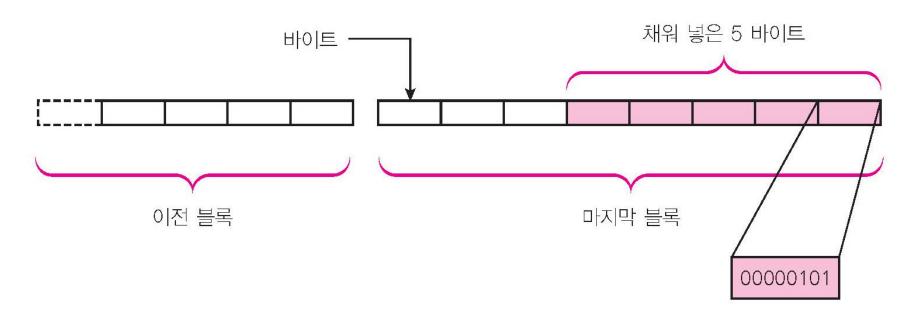
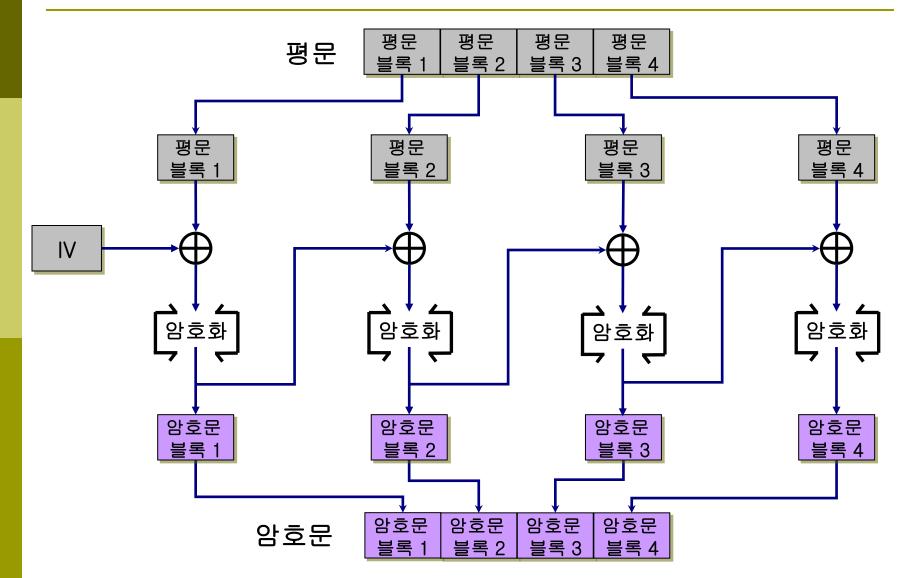
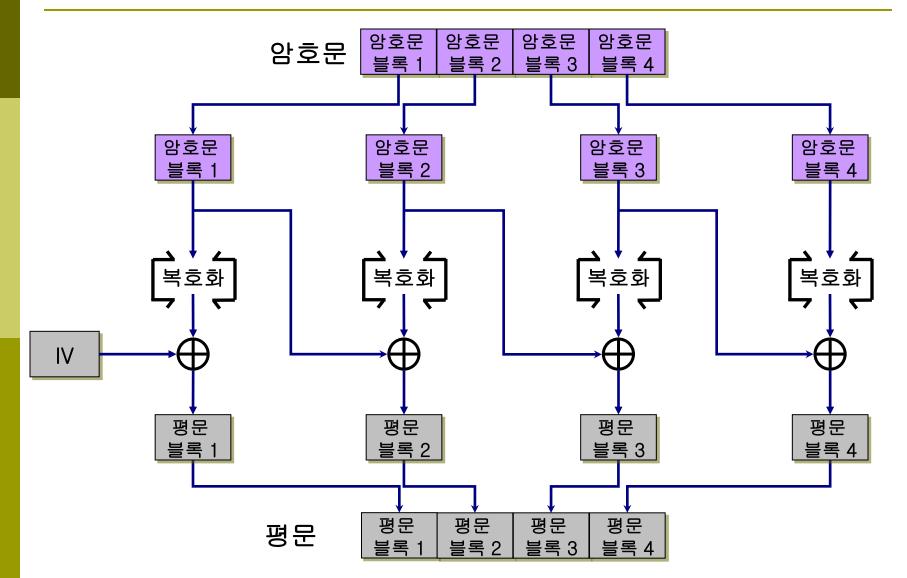
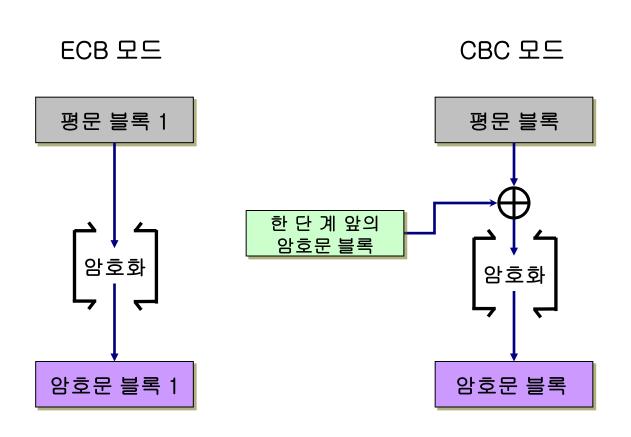
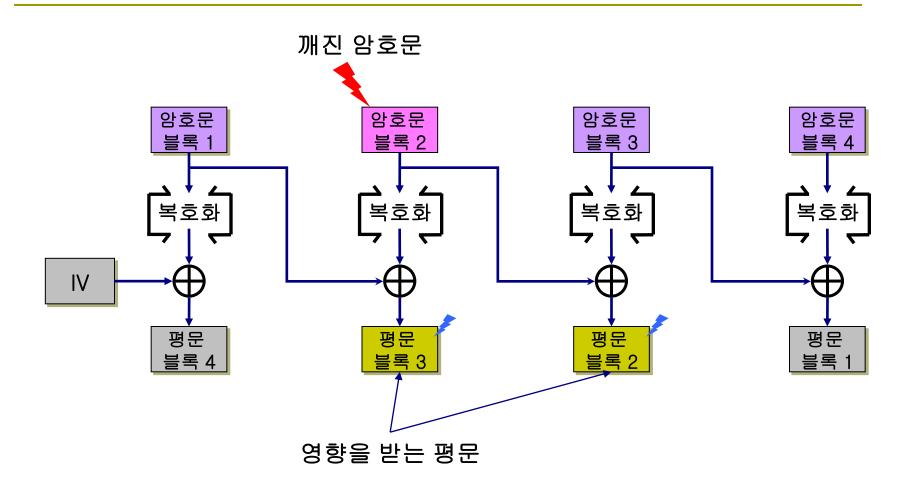




그림 4-4 마지막 블록 채우기

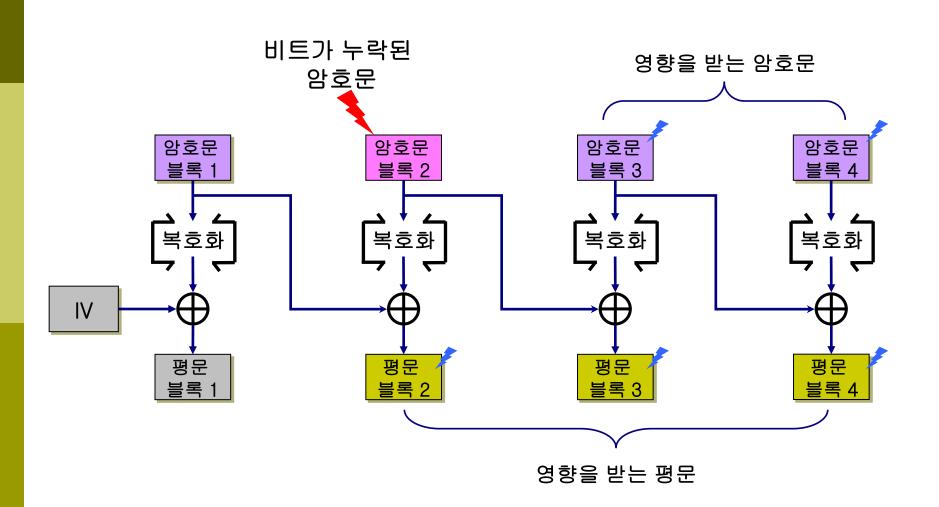

CBC 모드(암호 블록 연쇄 모드)

CBC 모드(암호 블록 연쇄 모드)

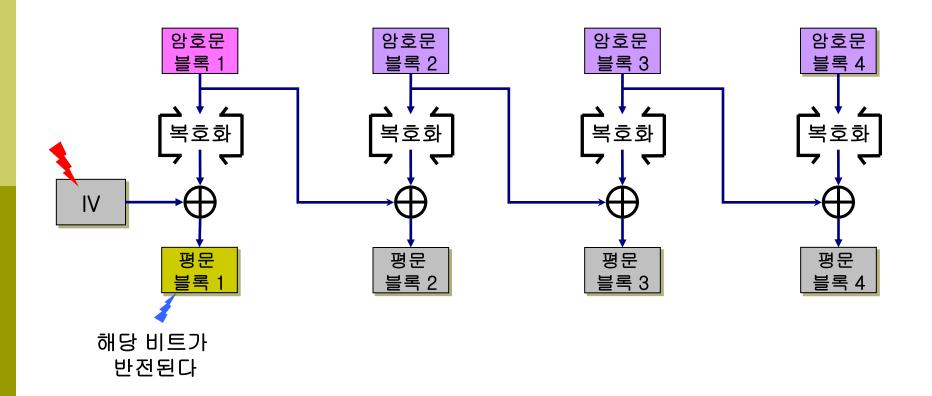

ECB 모드와 CBC 모드의 비교

CBC 모드의 특징

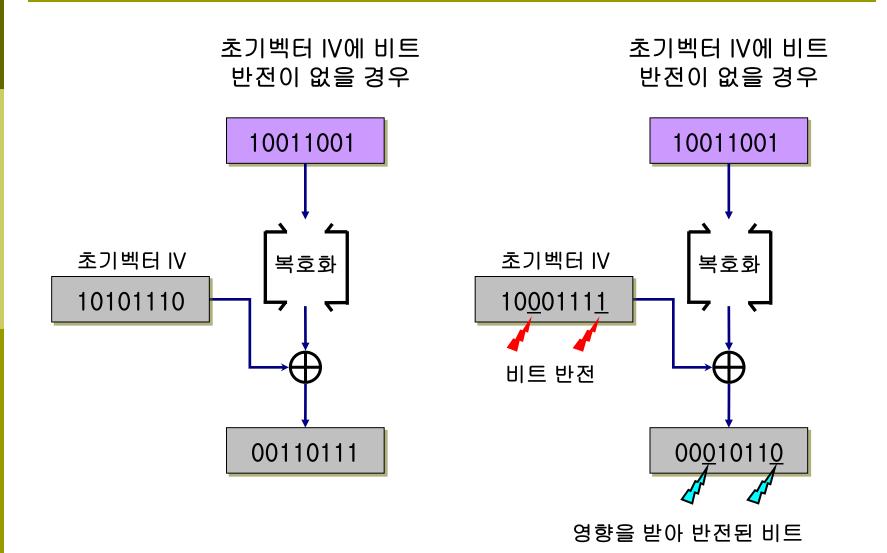
- □ 평문 블록은 반드시 「1 단계 앞의 암호문 블록」과 XOR을 취하고 나서 암호화된다.
 - 따라서 만약 평문 블록1과 2의 값이 같은 경우라도 암호문 블록1 과 2의 값이 같아진다고는 할 수 없다.
 - 따라서 ECB 모드가 갖고 있는 결점이 CBC 모드에는 없다.
- □ CBC 모드에서는 도중의 평문 블록만을 뽑아내서 암호화할 수는 없다. 암호문 블록3을 만들고 싶다면 적어도 평문 블록의 1, 2, 3까지가 갖추어져 있어야만 한다.
- □ CBC 모드의 암호문 블록이 1개 파손되었다면, 이 때 암호문 블록의 길이가 바뀌지 않는다면 복호화 했을 때에 평문 블록에 미치는 영향은 2블록에 머문다


CBC 모드에서 암호문 블록이 파손되면 2개의 평문 블록에 영향을 미친다 __암호문 블록이 파손된 암호문을 복호화한 경우(CBC 모드)

CBC 모드에 대한 공격


- □ 적극적 공격자 맬로리가 암호문을 고쳐 써서 수 신자가 암호문을 복호화했을 때의 평문을 조작 하고 싶어 한다고 해보자.
- □ 만약 맬로리가 초기화 벡터의 임의의 비트를 반전(1이라면 0,0이라면 1로)시킬 수 있다면, 암호 블록1에 대응하는 평문 블록1(복호화되어 얻어지는 평문 블록)의 비트를 반전시킬 수 있다.

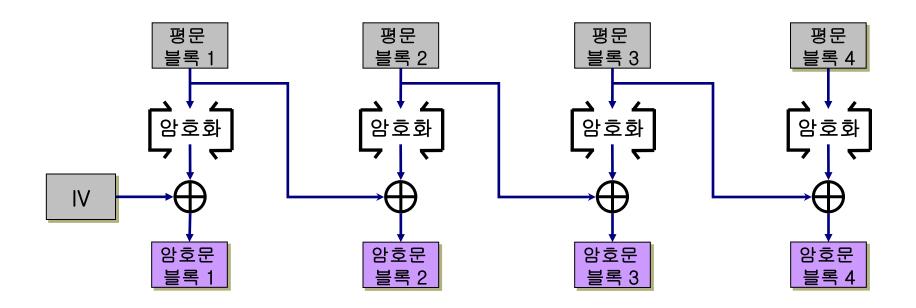
CBC 모드에서 암호문 블록에서 비트 누락이 생기면 그 이후의 평문 블록 전체에 영향을 미친다



CBC 모드에 대한 공격(초기화 벡터의 비트 반전)

□ 초기화 벡터의 비트를 반전시켜 평문 블록의 비트 를 반전시키는 공격(CBC 모드)

CBC 모드에서 초기벡터의 비트반전에 대한 영향



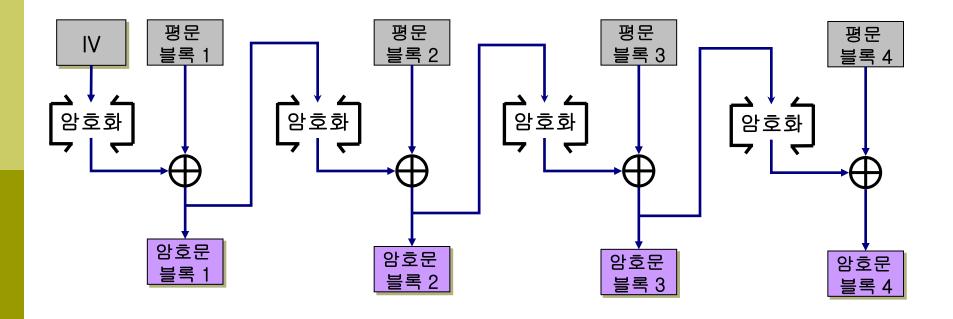
CBC 모드 활용의 예

- □ IPsec에는 통신의 기밀성을 지키기 위해 CBC 모드를 사용하고 있다.
 - 예를 들면 트리플 DES를 CBC 모드로 사용한 3DES-CBC나, AES를 CBC 모드로 사용한 AES-CBC 등이 여기에 해당된다.
- □ 인증을 수행하는 대칭암호 시스템의 하나인 Kerberos version 5에서도 사용하고 있다.

앨리스가 만든 CBC 모드 비슷한 것

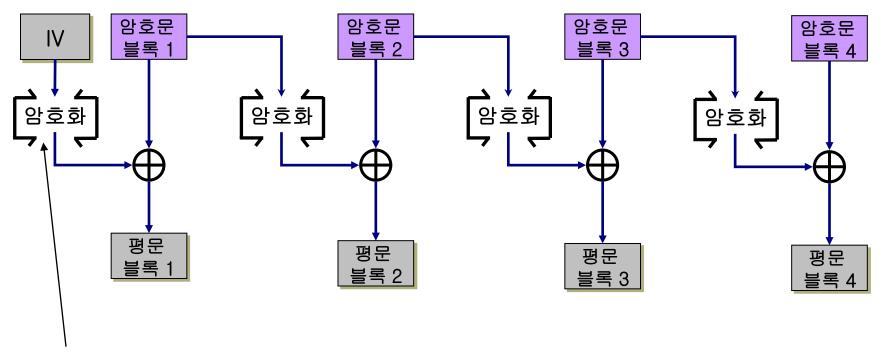
□ 앨리스가 생각해 낸 CBC 모드 비슷한 것은 어떤 성질을 가지고 있는가?

4.4 CFB 모드

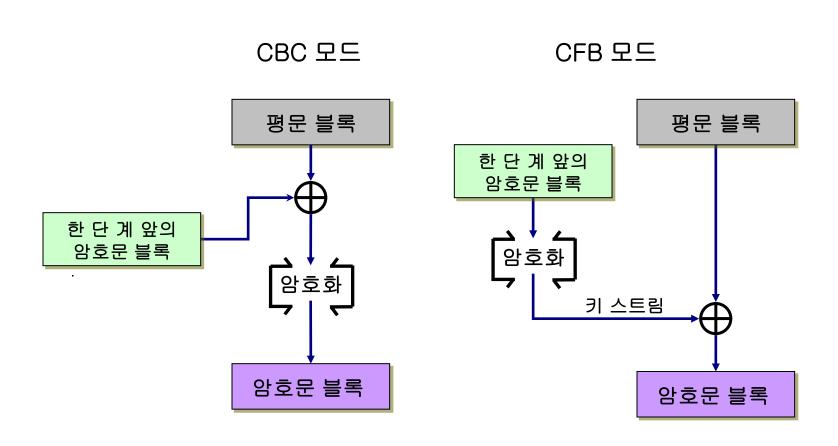

□ 절대로 해독할 수 없는 암호인 일회용 패드라는 암호를 XOR의 연습을 겸해서 소개하도록 한다

4.4.1 CFB 모드란

- □ CFB 모드는 Cipher FeedBack 모드(암호 피드백 모드)의 약자이다.
- □ CFB 모드에서는 1 단계 앞의 암호문 블록을 암 호 알고리즘의 입력으로 사용한다.
- □ 피드백이라는 것은, 여기서는 암호화의 입력으로 사용한다는 것을 의미한다


CFB 모드(암호 피드백 모드)

□ CFB 모드에 의한 암호화


CFB 모드(암호 피드백 모드)

□ CFB 모드에 의한 복호화

초기벡터를 복호화 하는 것이 아니라 암호화라는 점에 유의하기 바란다.

CBC 모드와 CFB 모드의 비교

초기화 벡터

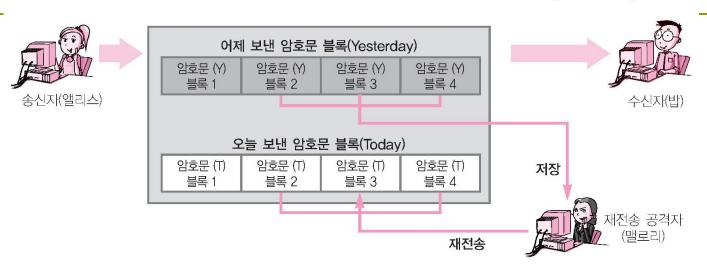
- □ 최초의 암호문 블록을 만들어낼 때는 1 단계 앞 의 출력이 존재하지 않으므로 대신에 **초기화 벡** 터(IV)를 사용한다
- □ 이것은 CBC 모드 때와 같다
- □ 초기화 벡터는 보통 암호화 때마다 다른 랜덤 비 트열을 사용한다

CFB 모드와 스트림 암호

- □ CFB 모드의 구조는 일회용 패드와 비슷하다.
 - 일회용 패드에서는「평문」과「랜덤한 비트열」을 XOR해서「암호문」을 만들어냈다.
 - CFB 모드에서는「평문 블록」과「암호 알고리즘의 출력」을 XOR해서「암호문 블록」을 만든다.
 - XOR에 의해 암호화하는 것이 비슷하다.

CFB 모드와 스트림 암호

- □ CFB 모드와 일회용 패드를 비교해서 살펴보면 일회용 패드의「랜덤한 비트열」에 대응되는 것 을 CFB 모드에서 찾는다면 그것은「암호 알고 리즘의 출력」이다.
- □ 암호 알고리즘의 출력은 계산으로 만들어내고 있는 것이므로 실제 난수는 아니다
- □ 그러므로 CFB 모드가 일회용 패드처럼 이론적 으로 해독 불가능한 것은 아니다.


CFB 모드의 복호화

- □ CFB 모드에서 복호화를 수행할 경우, 블록 암호 알고리즘 자체는 암호화를 수행하고 있다는 것 에 주의하라.
- □ 키 스트림은 암호화에 의해 생성되는 것이다.

CFB 모드에 대한 공격

□ CFB 모드에 대해서는 **재전송 공격**(replay attack) 이 가능하다.

CFB 모드에 대한 재전송 공격

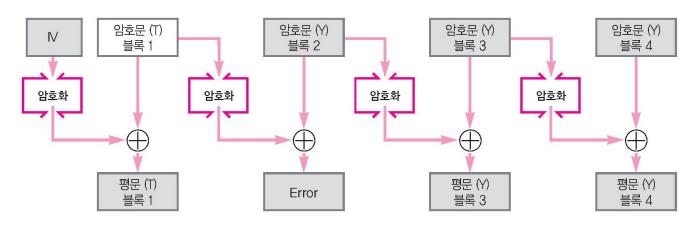
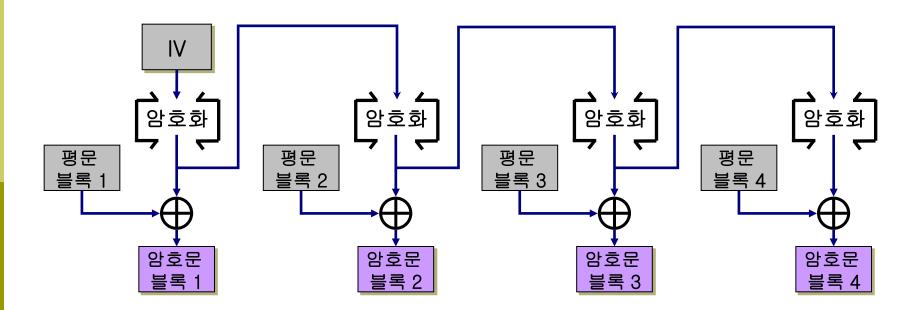


그림 4-14 CFB 모드에 대한 재전송 공격

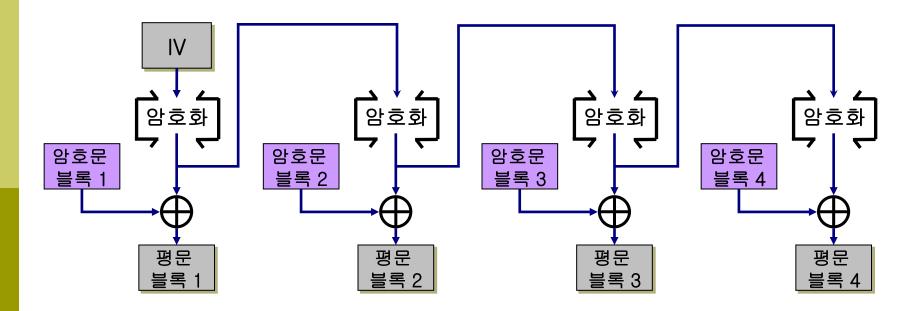
4.5 OFB 모드

4.5.1 OFB 모드란


- □ OFB 모드는 Output-FeedBack 모드(출력 피드 백 모드)의 약자이다.
- □ OFB 모드에서는 암호 알고리즘의 출력을 암호 알고리즘의 입력으로 피드백한다.
- □ OFB 모드에서는 평문 블록은 암호 알고리즘에 의해 직접 암호화되고 있는 것은 아니다.
- □ 평문 블록과 암호 알고리즘의 출력을 XOR해서 암호문 블록을 만들어내고 있다.
- □ OFB 모드는 이 점에서 CFB 모드와 비슷하다.

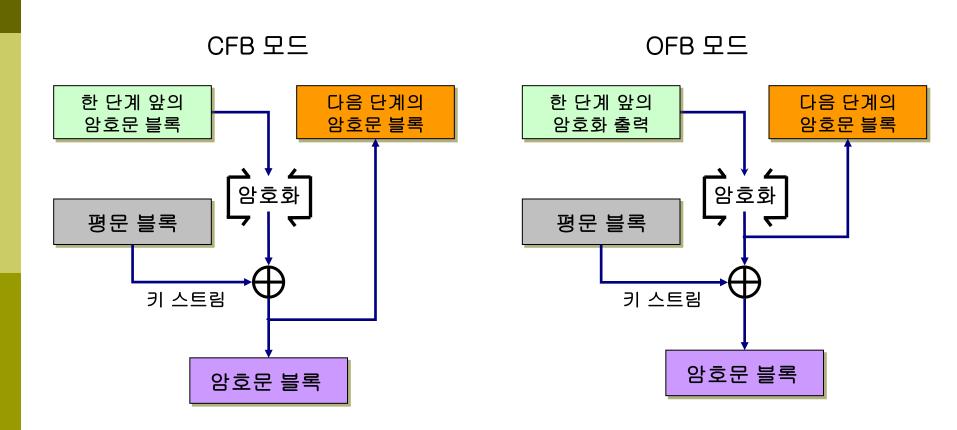
초기화 벡터

- □ OFB 모드에서도 CBC 모드나 CFB 모드와 마찬 가지로 **초기화 벡터**(IV)를 사용한다.
- 초기화 벡터는 암호화 때마다 다른 랜덤 비트열 을 이용하는 것이 보통이다.


OFB 모드(출력 피드백 모드)

□ OFB 모드에 의한 암호화

OFB 모드(출력 피드백 모드)


□ OFB 모드에 의한 복호화

CFB 모드와 OFB 모드의 비교

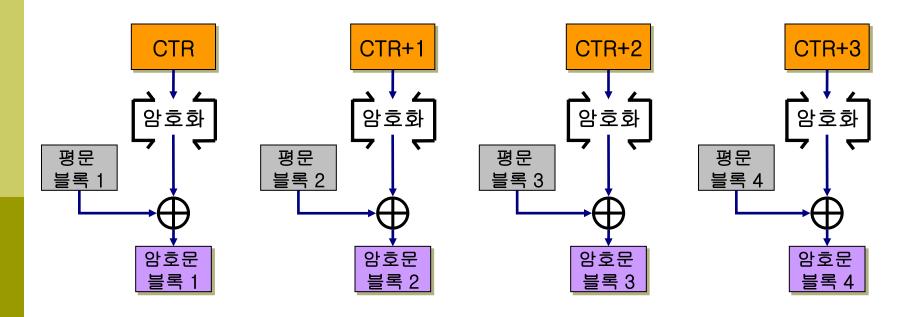
- □ OFB 모드와 CFB 모드에서는 암호 알고리즘으로의 입력 만이 다르다.
- □ CFB 모드에서는 1개 앞의 암호문 블록이 암호 알고리즘 으로의 입력이었다. 암호문(사이퍼) 블록을 암호 알고리 즘으로 피드백한 것이다. 그렇기 때문에「사이퍼 피드백 모드」라는 이름을 붙인 것이다.
- □ 한편 OFB 모드에서는 암호 알고리즘의 입력으로 사용되는 것은 암호 알고리즘의 한 단계 앞의 출력이다. 출력 (아웃풋)을 암호 알고리즘으로 피드백한 것이다. 이것 때문에 「아웃풋 피드백 모드」라는 이름이 붙어 있다.

CFB 모드와 OFB 모드의 비교

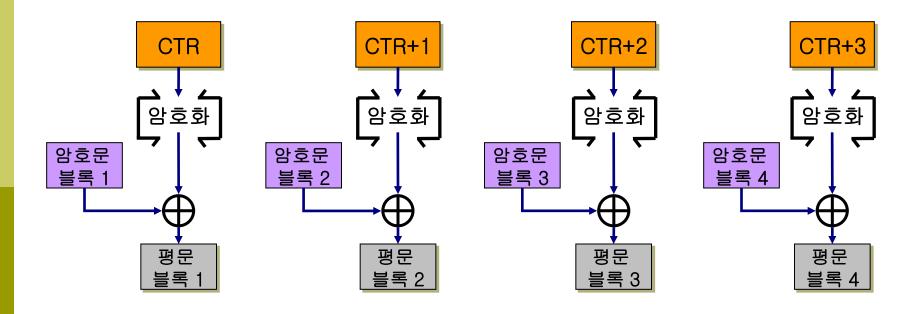
4.6 CTR 모드

- □ CTR 모드는 CounTeR 모드의 약자입니다.
- □ CTR 모드는 1씩 증가해 가는 카운터를 암호화해 서 키 스트림을 만들어 내는 스트림 암호이다.
- □ CTR 모드에서는 블록을 암호화할 때마다 1씩 증가해 가는 카운터를 암호화해서 키 스트림을 만든다.
 - 즉, 카운터를 암호화한 비트열과, 평문 블록과의 XOR
 을 취한 결과가 암호문 블록이 된다.

4.6.1 카운터 만드는 법


- □ 카운터의 초기값은 암호화 때마다 다른 값 (nonce, 비표)을 기초로 해서 만든다.
- □ 블록 길이가 128비트(16바이트)인 경우 카운터 의 초기값은 예를 들면,

□ 와 같은 값을 사용할 수 있을 것이다.


CTR 모드(카운터 모드)

□ CTR 모드에 의한 암호화

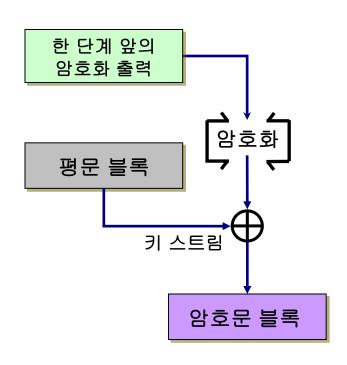
CTR 모드(카운터 모드)

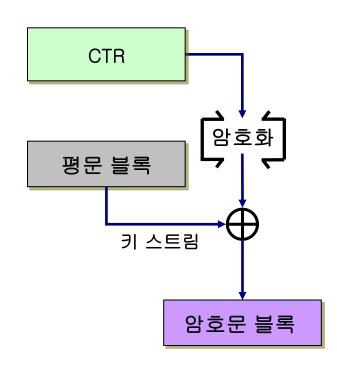
□ CTR 모드에 의한 복호화

카운터 만드는 법

- □ 앞부분의 8바이트는 비표로 암호화 때마다 다른 값으로 하지 않으면 안 된다.
- □ 후반 8바이트는 블록 번호로 이 부분을 카운트해 서 하나씩 증가시켜가면 된다.
- □ 암호화가 진행됨에 따라 카운터의 값은 다음과 같이 변환한다.

카운터 값


- □ 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 01 평문 블록1용 의 카운터(초기값)
- □ 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 02 평문 블록2용 의 카운터
- □ 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 03 평문 블록3용 의 카운터
- □ 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 04 평문 블록4용 의 카운터


:

4.6.2 OFB 모드와 CTR 모드의 비교

- □ CTR 모드는 OFB 모드와 같은 스트림 암호의 일 종이다.
- □ 1개의 블록의 암호화하는 부분만을 추출해서 OFB 모드와 CTR 모드를 비교하면 차이를 잘 알 수 있을 것이다
- □ OFB 모드에서는 암호화의 출력을 입력으로 피드백하고 있지만, CTR 모드에서는 카운터의 값이 암호화의 입력이 된다.

OFB 모드와 CTR 모드의 비교

4.6.3 CTR 모드의 특징

- □ CTR 모드의 암호화와 복호화는 완전히 같은 구조이므로, 프로그램으로 구현하는 것이 매우 간단하다.
 - 이것은 OFB 모드와 같은 스트림 암호의 특징이다.
- □ 또한 CTR 모드에서는 블록을 임의의 순서로 암 호화 • 복화화할 수 있다.
 - 암호화 복호화 때에 사용하는「카운터」는 비표와 블록 번호로부터 금방 구할 수 있기 때문이다.
 - 이것은 OFB 모드에는 없었던 성질이다.

4.6.4 오류와 기밀성

- □ CTR 모드는 통신 오류와 기밀성에 관해서 OFB 모드와 거의 같은 성질을 가지고 있다.
- □ CTR 모드의 암호문 블록에서 1비트의 반전이 발생했다고 하자.
- □ 복호화를 수행하면, 반전된 비트에 대응하는 평문 블록의 1비트만이 반전 되고, 오류는 확대되지 않는다.

오류와 기밀성

- □ CTR 모드에는 OFB 모드보다도 뛰어난 성질이 하나 있다.
- □ OFB 모드에서는 키 스트림의 1블록을 암호화한 결과가, 암호화 전의 결과와 우연히 같아졌다고 하면 그 이후 키 스트림은 완전히 같은 값의 반복이 된다.
- □ 그러나 CTR 모드에서는 그런 걱정은 없다.

4.6.5 모드 선택

	이름	장점	단점	비고
E C B F II	Electri c CodeBoo k 전자 부호표 모드	간단고속병렬 처리가능(암호화. 복호화 양쪽)	 평문 속의 반복이 암호문에 반영된다. 암호문 블록의 삭제나 교체에 의한 평문의 조작이 가능 비트 단위의 에러가 있는 암호문을 복호화하면, 대응하는 블록이 에러가 된다. 재생 공격이 가능 	사용 해서 는안 된다

	이름	장점	단점	고
CBC HU	Cipher Block Chainin g 암호 블록 연쇄 모드	• 평문의 반복은 암호문에 반영되지 않는다. • 병렬 처리 가능(복호화만) • 임의의 암호문 블록을 복호화할 수 있다.	 비트 단위의 에러가 있는 암호문을 복호화하면, 1블 록 전체와 다음 블록의 대 응하는 비트가 에러가 된다. 암호화에서는 병렬 처리를 할 수 없다. 	권장

	이름	장점	단점	비고
CFB RU	Cipher- FeedBac k 암호 미드백 모드	 패딩이 필요 없다. 병렬 처리 가능(복호화만) 임의의 암호문 블록을 복호화할 수 있다. 	 암호화에서는 병렬 처리를 할 수 없다. 비트 단위의 에러가 있는 암호문을 복호화하면, 1블록 전체와 다음 블록의 대응하는 비트가에러가 된다. 재생 공격이 가능 	• 현재는 사용 안 함. • CTR 모드용하 는 편이 나음.

	이름	장점	단점	비고
O F B 머니	Output- FeedBac k 출력 피드백 모드	 패딩이 필요 없다. 암호화.복호화의 사전 준비를 할 수 있다. 암호화와 복호화가 같은 구조를 하고 있다. 비트 단위의 에러가 있는 암호문을 복호화하면, 평문의 대응하는 비트만 에러가 된다. 	• 병렬 처리를 할수 없다. • 능동적 공격자가 암호문 블록을 비트 반전시키면, 대응하는 평문 블록이 비트 반전한다.	• CTR 모를 용 는 이 음

	이름	장점	단점	고
C T R P U	CounT eR 카운 터 모드	 패딩이 필요 없다. 암호화·복호화의 사전 준비를 할수 있다. 암호화와 복호화가 같은 구조를하고 있다. 비트 단위의 에러가 있는 암호문을복호화하면,평문의 대응하는비트만에러가 된다. 병렬처리가능(암호화·복호화양쪽) 	• 능동적 공격 자가 암호문 블록을 비트 반전시키면, 대응하는 평 문 블록이 비 트 반전한다.	권 장